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Abstract. This paper presents a technique to construct compilers ex-
pressed in a strict, purely functional setting. The compilers do not rely
on any explicit data structures, like trees, stacks or queues, to efficiently
perform the compilation task. They are constructed as a set of func-
tions which are directly called by the parser. An abstract syntax tree is
neither constructed nor traversed. Such deforestated compilers are auto-
matically derived from an attribute grammar specification. Furthermore
this technique can be used to efficiently implement any multiple traversal
algorithm.

1 Introduction

Traditionally, compilers are organized in two main phases: the parsing phase and
the attribute evaluation phase, with an abstract syntax tree as the intermediate
data structure. The parser constructs the abstract syntax tree and the attribute
evaluator decorates that tree, i.e., it computes attribute values associated to the
nodes of the tree. In most implementations the attribute evaluator walks up and
down in the tree, while in the mean time decorating it with attribute values. The
abstract syntax tree guides the evaluator and stores attributes that are needed
on different traversals of the compiler.

This paper presents a new technique for constructing compilers as a set of
strict, side-effect free functions. Furthermore the compilers are completely defor-
estated, i.e., no explicit intermediate data structure (e.g., abstract syntax tree)
has to be defined, constructed, nor traversed. The parser directly calls attribute
evaluation functions, the so-called wvisit-functions. Moreover all the attributes
are handled in a canonical way: they just show up as arguments and results of
visit-functions.

Because our attribute evaluators are independent of any particular data
structure definition, they are more generic than classical attribute evaluators.
They are highly reusable and new semantics can easily be added to the attribute
evaluators, even when separate analysis of compiler components is considered.
For example, new productions can be incorporated to an existent compiler with-
out changing its attribute evaluator. The visit-functions which implement the
new productions are simply added to the compiler.

Although it is possible to apply these techniques in hand-written compil-
ers, it is much easier to generate them from an Attribute Grammar [Knu68§].
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Our techniques were developed in the context of the incremental evaluation of
(Higher-order) attribute grammars: efficient incremental behaviour is achieved
by memoization of visit-function calls [PSV92].

In Section 2 we briefly introduce attribute grammars, present a simple at-
tribute grammar and describe attribute evaluators based on the visit-sequence
paradigm. In Section 3 A-attribute evaluators are introduced. Section 4 deals
with parse-time attribute evaluation. Section 5 discusses other applications of
our techniques and section 6 briefly discusses the current implementation. Sec-
tion 7 contains the conclusions.

2 Attribute Grammars

The compilers considered in this paper are specified through an Attribute Gram-
mar (AG) [Knu68] which belong to the class of Ordered Attribute Grammars
[Kas80]. These AGs have proven to be a suitable formalism for describing pro-
gramming languages and their associated tools, like compilers, language based
editors, etc. From an AG a parser and an Attribute Evaluator (AE) can auto-
matically be derived.

This section introduces an attribute grammar which acts as the running ex-
ample throughout this paper. Using it, we present the concept of visit-sequences
[Kas80] which are the basis of our techniques.

2.1 The Block Language Example

This section presents a analyser for an extremely small language, called BLOCK,
which deals with the scope of variables in a block structured language. An example
BLOCK program is:

blk main : ( use y;
blk (dcl w; use y; use w);
dcl x;dcl z;dcl y; use w;

);

This language does not require that declarations of identifiers occur bhefore
their first use. Furthermore an identifier from a global scope is visible in a local
scope only if is not hidden by an a declarations with a same identifier in a more
local scope. In a block an identifier may be declared at most once. The above
program contains two errors: at the outer level the variable z has been declared
twice and the use of the variable w has no binding occurrence at all.

Because we allow a use-before-declare discipline, a conventional implementa-
tion of the required analysis naturally leads to a program that traverses each
block twice: once for processing the declarations of identifiers and constructing
an environment and once for processing the uses of identifiers using the com-
puted environment to check for the use of non-declared names. The uniqueness
of names is checked in the first traversal: for each newly encountered declaration
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it is checked whether that identifier has already been declared in this block. In
that case an error message is computed. Since we need to distinguish between
identifiers declared at different levels, we introduce an inherited attribute lev
indicating the nesting level of a block. The environment is a list of bindings of
the form (name, lev).

In order to make the problem more interesting, and to demonstrate our tech-
niques, we require that the error messages produced in both traversals are to be
merged in order to generate a list of errors which follows the sequential structure
of the program.

Figure 1 presents the attribute grammar defining the BLoCK language. We
use a standard AG notation: Productions are labelled with a name for future
references. Within the attribution rules of a production, different occurrences
of the same symbol are denoted by distinct subscripts. Inherited (synthesized)
attributes are denoted with the down (up) arrow | (1). As usual in AGs we
distinguish two classes of terminals: the literal symbols (e.g., >:’, *decl’, etc)
which do not play a role in the attribution rules and the pseudo terminal symbols
(e.g., name), which are non-terminal symbols for which the productions are im-
plicit (traditionally provided by an external lexical analyser). Pseudo terminal
symbols are syntactically referenced in the AG, i.e., they are used directly as
values in the attribution rules. The attribution rules are written as HASKELL-
like expressions. The semantic functions mustbein and mustnotbein define usual
symbol table lookup operations.

root Prog

Prog <t errors >
Prog — RooTP (Its)

ItS-lGU_ =0 It <l lev, | dcli,| env,1 dclo, 1 errors >
Its.dcli =[] It — Usk (Puse’ name)
Its.env = Its.dclo Tt.dclo = It.dcli

Prog.errors = Its.errors It.errors = name ‘mustbein® It.env

Its <l lev,| dcli, ] env,? dclo, 1 errors > | DECL (*dcl’ name) .
Tts — NiLIts () It.dclo = (name,It.lev) : It.dcli
Its.delo = Its.deli It.errors = (name, It.lev) ‘mustnotbein® It.dcli
| Brock ("blk? *(* Its *)?)
Itslev = It.lev+1
Its.dcli = It.env

Its.errors = []
| Conslts (It ?3? Its)

It.lev = Its;.lev

Itss.lev = Itsy.lev Its.env = Its.dc.lo
Itdeli = Itsi.deli [t.delo = It.deli
Ttso.deli — It.delo It.error = Its.errors
It.env = Itsi.env

Itss.env = Its1.env

Itsy.errors = It.errors++Itss.errors

Fig. 1. The Block Attribute Grammar.
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2.2 Structured Visit-Sequences

The attribute evaluators considered in this paper are based on the visit-sequence
paradigm [Kas80].

A visit-sequence describes, for a node in the tree, the sequence of states the
node will go through when the abstract syntax tree is decorated. The essential
property is that this sequence depends solely on the production at the node,
and not on the context in which it occurs, hence we denote vis(p) to denote
the visit-sequence associated to production p. In a visit-sequence evaluator, the
number of visits to a non-terminal is fixed, and independent of the production.
We denote the number of visits of non-terminal X by v(X). Each visit 7 to a
node labelled with a production for a non-terminal X has a fixed interface. This
interface consists of a set of inherited attributes of X that are available to visit
i and another set of synthesized attributes that are guaranteed to be computed
by visit i. We denote these two sets by A;,,(X, i) and Asy, (X, 17), respectively.

Visit-sequences are the outcome of attribute evaluation scheduling algorithms.
They can be directly used to guide the decoration of a classical attribute evalua-
tor [Kas91]. Visit-sequences, however, are the input of our generating process. It
is then convenient to use a more structured representation of the visit-sequences.
Thus, they are divided into visit-sub-sequences vss(p,i), containing the instruc-
tions to be performed on visit ¢ to the production p.

In order to simplify the presentation of our algorithm, visit-sub-sequences are
annotated with define and usage attribute directives. Every visit-sub-sequence
vss(p, i) is annotated with the interface of visit i to X: inh(a) and syn(8), where
a () is the list of the elements of A;,,(X,7) (Asyn(X,7)). Every instruction
eval(a) is annotated with the directive uses(bs) which specifies the attribute
occurrences used to evaluate a, i.e., the occurrences that a depends on. The
instruction visit(c,i) causes child ¢ of production p to be visited for the ith
time. We denote child ¢ of p by p. and the father (i.e. the left-hand side symbol of
p) by po. The visit uses the attribute occurrences of A;p,p(p., ) as arguments and
returns the attribute occurrences of Ay, (pc,i). Thus visit(e, i) is annotated
with inp(is) and out(os) where is (0s) is the list of the elements of A;,n(pe,1)
(Asyn(pe,1))-

Figure 2 presents the structured and annotated visit-sub-sequences! for the
productions ROOTP and BrLoCK.

! The visit-sequences were obtained using the Chained Scheduling Algorithm [Pen94|.
Chained scheduling is a variant of Kastens’ Ordered Scheduling Algorithm [Kas80].
It was designed with the aim at minimizing the number of attributes that must be
passed between traversals and, in this way, improving the behaviour of functional
attribute evaluators. Chained scheduling chooses the attribute evaluation order such
that every attribute is computed as early as possible. The visit-sequences of fig-
ure 2 are similar to the ones produced by Kastens’ algorithm. The only exception
is the schedule of the instructions eval(Its.lev). Kastens’ algorithm schedules this
instruction to the second visit-sub-sequence of production Brock. In that case, the
occurrence It.lev must be retained for the second sub-sequence. A detailed analysis
of both scheduling algorithms can be found in [Pen94] (chapter 5).

Ol LAC U Zyl_ﬂbl

www.manaraa.com




plan Brock
begin 1 inh([t.lev, It.dcli)

plan RooTP eval ()

begin 1 inh() , uses(It.lev),

eval (Its.lev) eval  ([t.dclo)
uses|(), uses(It.dcli)

eval (Its.dcli) end 1 syn(It.dclo)
uses|(), begin 2 inh(It.env)

visit (Its,1) eval  (Its.dcli)
inp(Its.lev, Its.dcli) uses(It.env),
out(Its.dclo), visit ([ts,1)

eval (Its.env) inp(Its.dcli,[ Its.lev )
uses(Its.dclo), out(Its.dclo),

visit (Its,2) eval (Its.env)
inp(Its.env) uses(Its.dclo),
out(Its.errors), visit ([ts,2)

eval (Prog.errors)
uses(Its.errors)
end 1 syn(Prog.errors)

inp(Its.env)
out(Its.errors),
eval  ([t.errors)
uses(Its.errors)
end 2 syn([t.errors)

Fig. 2. Structured Visit-Sequences: the attribute occurrence is defined in the
first traversal of BLock and is used in the next one.

3 Deriving A-Attribute Evaluators

This section shows how to derive purely functional and strict attribute evaluators,
starting from an available set of visit-sequences. The derived attribute evaluators
are presented in HASKELL. We use HASKELL because it is a compact, well-
defined and executable representation for our A-attribute evaluators. We start
by describing our techniques informally and by analysing a simple example. After
that, we present the formal derivation of A-attribute evaluators and we derive
the evaluator for the BLOCK language.

The M-attribute evaluators consist of a set of partial parameterized wvisit-
functions, each performing the computations of one traversal of the evaluator.
Those functions return, as one of their results, the visit-functions for the next
traversal. Performing the visit corresponds to totally parameterising the visit-
functions and, once again returning the function for the next traversal. The
main idea is that for each visit-sub-sequence we construct a function that, be-
sides mapping inherited to synthesized attributes, also returns the function that
represents the next visit. Any state information needed in future visits is passed
on by partially parameterising a more general function. The only exception is
the final visit-function which returns synthesized attributes.
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Consider the following simplified visit-sub-sequences for production X —
Pron (Y Z) (the annotations inp and out of the visit instructions are
omitted since they are not relevant for this example):

plan Pron
begin 1 inh(X.inh1)
v1sit (v,1) begin 2 inh(X.inh2)
o ; visit (Z,1)
uses(X.inhy,---), e
‘e,wtzit 8/(7 2 ) uses(X.inhi,--+)
-Syni end 2 Syn(X.Synz)
uses(- ),

end 1 syn(X.synp)

Observe that, the inherited attribute X.inh; must be explicitly passed from the
first visit of X (where it is defined) to the second one (where it is used). The non-
terminal Y is visited twice in the first visit to X. These two visit-sub-sequences
above are implemented by the following two visit-functions:

)\PTodl Ayl )‘Zl z'nhl =(()‘P7‘od2 z'nhl AZ1),syn1)

where (,) =Ay1 ...
inhi defined in Ap, 41
() : used in  Ap,, 42

syny = -
partial parameterized in the

Aproaz (Wl Az inhy = (syn2) first traversal and totally

where (...) = Az ... parameterized in the second one.

syna = f(linhy ,...)

The visit-functions Ay1 and Az define the computations of the first traversal
of non-terminal symbols Y and Z. The attribute occurrence X.z is passed from
the first to the second traversal as a hidden result of Ap,,s1 in the form of
an extra argument to Ap,,s2. Note that no reference to visits for non-terminal
symbol Yis included in Ap,,42 since all the visits to Y occur in the first visit to
P. Observe also that the function Az: is directly passed to the second visit to
X, where the first visit to Z is performed.

The A-attribute evaluators can be automatically derived from the visit-sub-
sequences, by performing an attribute lifetime analysis: for each attribute occur-
rence it is known in which visit it is defined and in which visit(s) it is used. Thus,
let us introduce two predicates def and use. The predicate def(p, a,v) denotes
whether attribute a of production p is defined in visit v. Likewise, use(p, a,v)
denotes whether attribute a of production p is used in visit v:

def(p,a,v) = eval(a) € vss(p,v) V inh(...,qa,...) € vss(p,v)
Vout(...,a,...) € vss(p,v)

use(p,a,v) = uses(...,a,...) € vss(p,v) Vsyn(...,a,...) € vss(p,v)
V inp(...,a,...) € vss(p,v)

www.manaraa.com




Pseudo terminal symbols may also be used as normal attribute occurrences
within the attribute equations of the AG (like the symbol name of the BLOCK
AG). Consequently, we need to perform a lifetime analysis of those symbols too.
Thus, we extend the above predicates to work on terminal symbols too. The
terminal symbols, denoted by X', are not defined in the attribute equations, but
at parse-time. So, we assign visit number 0 to the parser. The predicate def is
extended as follows:

def(p,a,0)=a€ X

An attribute or pseudo terminal symbol of a production p is alive at visit
1, if it is defined in a previous visit and it is used in visit ¢ or later. For each
production p and for each of its visits 7, with 1 < i < v(po), we define the set
alive(p,i) which contains the live occurrences on visit i. It is defined as follows:

alive(p,i) = { a | def(p,a, k) A use(p,a,j) N k<i<j}

Let us concentrate now on the analysis of the visits to the non-terminal
symbols of the grammar. Let alive_visits(p, ¢,v) denote the list of visits to child
c of production p, which have to be performed in visit-sub-sequence v to p or in
later ones. This list is defined as follows:

alive_visits(p,c,v) = [ visit(c, 1) | visit(e,i) € wvss(p,j), v < j < v(po)]

Consider the visit-sub-sequences of production Pron. For the first sub-sequen-
ce we have the following visits: alivevisits(Pron, 1,1) = [visit(p1, 1), visit(p1, 2)]
and alivewisits(Prop, 2,1) = [visit(p2, 1)]. That is, in the first visit to ProD
or later ones the non-terminal symbol Y is visited twice and the symbol Z is
visited once. Note that according to the visit-sub-sequences the single visit to Z
is performed in the second visit of PrOD. Consider now the visit-function \p,., 1.
Observe that its arguments contain the reference to the first traversal of Y only
(argument Ay1). The function for the second traversal is obtained as a result of
Ay 1. Observe also that the reference to the visit to Z is passed on to the second
traversal of PrROD, where it is called. That is, the arguments of the visit-function
contain a reference to the earliest visit (function) which has to be performed for
all alive non-terminal symbols.

In order to derive our visit-functions we need references (the visits-functions)
to the earliest visit-function: all following references are returned by evaluating
the previous ones. Thus, we define the function inspect(p,v) which takes the
head of the list returned by nt_vis (i.e., the following visit), for all non-terminal
symbols of production p. This is a partial function, since the list returned by
nt_vis may be empty. This occurs when no further visits to a non-terminal
symbol are performed. This function is defined as follows:

inspect(p,v) = { hd alivevisits(p,c,v) : alivewisits(p,c,v) Z[] N p. € N }

, where hd is the usual operation that returns the head of a list and N denotes
the set of non-terminal symbols.
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We describe now the derivation of the A-attribute evaluator. For each pro-
duction p and for each traversal i of non-terminal symbol pg a visit-function A
is derived. The arguments of this visit-function are:

1. The attribute occurrences which are alive at visit 7, alive(p, i),

2. The deforestated visit-functions derived for the right-hand side symbols of p
which are inspected in traversal i or later, inspect(p,i), and

3. The inherited attributes of traversal i, i.e., A;np(po,1).

The result is a tuple of which the first element is the partial parameterized
function for the next traversal and the other elements are the synthesized at-
tributes, i.e., Asyn(po,i). Thus, the visit-functions have the following signature:

Api = <type_pp_args(p,i)> T (inh1) = -+ = T (inhk) —
(T Ot ), T(syn 1), .. T (syn 1))

, with {inh_1,... inh-k} = Ajn(po,i), {syn-l,....synd} = Agyn(po,i). T(a)

should be interpreted as the derived type for element a. The fragment <type_pp_args(p,i)>
denotes the type of the elements in alive(p, i) and in inspect(p,i). This fragment

is defined as follows:

<type-pp-args(p,i)>=T(a1) = -+ = T(am) = T(Aut,) = T(Aut,) =
, for all a; such that a; € alive(p,i) and for all vt; such that vt; € inspect(p,i).

The visit-function which performs the last traversal of a non-terminal does
not return any partial parameterized visit-function. Its signature is:

Apn 2 <type_pp-args(p,i)> T(inh.1) — --- = T (inh_k) —
(T (syn-1),.... T (syn-))

Let us now derive the code of the visit-function A,:. It looks as follows:

Ay <par_par(p,i)> <inherited(i) > =

((Api+r  <par_par(p,i+ 1)>), <synthesized(i)>)
where <body(i) >

and the visit-functions which performs the last traversal is:
Apn <par_par(p,n)> <inherited(i) > = (<synthesized(i)>)
where <body(n)>

where the code fragments defining the inherited and synthesized attributes look
as follows:

<inherited(i)> =inh.l inh.2...inh_k

<synthesized(i) > = syn_1,syn2, ..., inhl

The code fragment <par_par(p,j)> denotes the partial parameterisation of
the next visit-function.
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<par_par(p,j)>=ai...am Aut, - Aut

n

The body <body(i) > of each visit-function A,: is generated according to the
instructions of the visit-sub-sequence vss(p,i). Every attribute equation of the
form

eval (pg.a)
uses(attroces)

, defining an attribute occurrence p,.a = f (attroces) of production p, generates
an equation

(aq) = f (attroces)

Attribute p,.a occurring in attroccs is replaced by a,. Local attribute oc-
currences of productions are copied literally to the body of the respective visit-
functions.

Every instruction visit(c,) defining the visit ¢ to non-terminal occurrence
pc introduces a call. Two cases have to be distinguished:

If i < v(p.) then the call returns the partial parameterized function for the next
traversal. The following equation is generated:

(A

ity synle, ... syn_je) = Api inhlc...inh.

If i = v(p.) then only the synthesized attributes are computed by the function
call.

(syn-le,...,syn-jc) = Api inhl....inhl.
, with {inh_1,...,inh_j} = Ainn(pe, i) and {syn_1,...,synl} = Agyn(pe,i).

Let us return to the BLOCK AG and derive the visit-function for the most
intricate production: the production Brock. First we compute the set alive and
the visit-trees for each visit to that production.

alive(BLOCK, 1) {}

alive(BLock,2) = {levs }
inspect(BLoCK, 1) = { Its* }
inspect(BLOCK,2) = { Tts' }

As expected, the attribute occurrence I't.lev must be passed from the first
to the second traversal. The two visit-functions derived for this production are:

ABloert <par-par(Brocik,1)> levy deliv = (Agjoer2 <par-par(Brock,2) > dclo1)
where <body(1)>
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ABloer2 <par_par(BLOCK,2)> envy

where <body(2)>

, where the fragments <par_par > are:

(errorsy)

<par_par(BLOCK, 1) > = Apq
<par_par(BLOCK,2) > = levy Appq

The body of the visit-functions is trivially derived from the corresponding
visit-sub-sequences (see figure 2): we present only the body of the visit-function
for the second traversal to the production Brock.

<body(2) > = delis = envy
(Aris2,dclos) = Apger dclis levy
errorss = Aps2 dclog
errors; = errorss

The complete A-attribute evaluator derived from the BLOCK attribute gram-
mar is presented in figure 3 (some copy rules were trivially removed from the

AE code).

ARootPl Afgsl = ETTOTS2

where levs =1
dCliQ = []
(Ars2,dclos) = Apge1 delia levs
errorss = Apy2 dclos

AConsitsl Argt A”S% dcli lev =
((Mconsrts® A2 )‘It\s%):dClOf‘)
where (A7;2,dclos) = Ay deli lev
(Aresg,delos) = Apy.1 dclog lev

Aniirest deli lev = ((Aniges2), deli)
AConsits? Ae2 )\”S% env = errors
where errorss = Aj;2 env

errorss = )\Itsg env

errors = errorss ++ errorss

Aniires2 env =[]

>‘Block:1 )\Itsl dcli lev =
((>‘Block:2 levs )‘Itsl)7dc”)

where levy = lev + 1
Apeeit name deli lev = (Apeez crrors),dclo)
where dclo = (name, lev) : deli

errors = (name, lev) ‘mustnotbein® dcli
Airser name deli lev = ((Ayg02 name), deli)
ABlock? lev2 A1 env = errorss
where (A7;.2,dclos) = A1 env levs

errorss = Apq2 dclos

ADecl2 ETTOTS €NV = errors

Alrse2 NAMe env = errors
where errors = name ‘mustbein‘ env

Fig. 3. The complete A-attribute evaluator for the BLock Language.

As a result of our techniques all visit-functions have become combinators,
i.e., they do not refer to global variables. The type of the A-attribute evaluator
is the type of the visit-function of the root symbol:
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Arootpt = ([a] = Int — ([a] — b,]a])) — b

This evaluator returns the attribute errors (type b) and it has one function as
argument: the visit-function which performs the first visit to the non-terminal
symbol Its. This function has the initial environment (type [a]) and the level
(type Int) as arguments and it returns a pair: the function for the second visit
to Its (with type [a] — b) and the total environment.

As a result of generating HASKELL code we inherit many useful properties of
this language. The A-attribute evaluator of figure 3, for example, is completely
polymorphic. In this evaluator nothing is defined about the type of the identifiers
of the language. The identifiers are provided by an external lexical analyser. They
can be a sequence of characters, a single character or even a numeral. The AE
can be reused in all those cases, provided that the semantic functions mustbein
and mustnotbein are defined on that type too.

This approach has the following properties:

— The A-attribute evaluators have the tendency to be more polymorphic.

— The evaluators are data type independent and, thus, new semantics can be
easily added: for example, new productions can be incorporated to a compiler
without having to change the evaluator. This property will be explained in
section 4.

— Attribute instances needed in different traversals of the evaluator are passed
between traversals as results/arguments of partial parameterized visit-
functions. No additional data structure is required to handle them, like trees
[Kas91,PSV92,SKS97] or stacks and queues [AS91].

— The resulting evaluators are higher-order attribute evaluators. The argu-
ments of the evaluators visit-functions are other AE visit-functions.

— The visit-functions find all the values they need in their arguments.

— No pattern matching is needed to detect the production applied at the node
the evaluator is visiting.

— The visit-functions are strict in all their arguments, as a result of the order
computed by the AG ordered scheduling algorithm.

— Efficient memory usage: data not needed is no longer referenced. References
to grammar symbols and attribute instances can efficiently be discarded as
soon as they have played their semantic role.

— The code of the attribute evaluator is shorter because no data structures are
defined.

4 Parse-Time Attribute Evaluation

Traditional attribute grammar systems construct an abstract syntax tree during
the parsing of the source text. This tree is used later to guide the attribute eval-
uator. For some classes of attribute grammars the construction of the abstract
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syntax tree may be avoided and the attribute evaluation may be performed in
conjunction with the parsing (L-attributed grammars). In this case, it is the
parser which guides the attribute evaluation. Such a model has several advan-
tages, namely speed and space requirements. Methods exist which make one-pass
attribute evaluation during parsing possible [ASUS86|.

Parse-time attribute evaluation is achieved as a by-product of our AG imple-
mentation: the parser directly calls the visit-functions which perform the first
traversal of the A-attribute evaluator.

Consider again the production BrLocK. The classic fragment of the parser
derived from the AG which defines this production and constructs the corre-
sponding tree node looks as follows?:

It : blk > Its ’)’
{Brock $3 }

The type of the parser derived from this specification is a function from a
string (i.e., the source text) to the type of the term defined by the production.

parser_It :: [Char] — It

, where It is a declared data type.

Using our techniques the parser derived from the AG generates a call to the
attribute evaluator visit-functions which perform its first traversal. Our parser
looks as follows:

It :blk >’ Its ’)?
{>‘Block1 $3 }

The deforestated visit-functions are partially parameterized with the argu-
ments available at parse-time. Those arguments are the other visit-functions
which are partially parameterized when parsing the grammar symbols of right-
hand side of the production. No explicit abstract syntax tree is constructed.

Consider the visit-function An;;r4s1 which returns the visit-function Ay 7442
The function Apnj72 iS & constant function: it does not depends on its argu-
ments. That is, it does not use the inherited attribute env and always returns an
empty list (i.e., it evaluates the synthesized attribute errors). As result, Ayrss2
can be computed at parse-time.

Generally, every visit-function, derived from a visit-sub-sequence i which does
not have inherited attributes (annotation inh) or which does not use its inher-
ited attributes, can be evaluated in visit 4 — 1. It has all the arguments it needs
available on the previous visit. Observe that the visit-functions derived for pro-
ductions applied to non-terminal symbols which only have synthesized attributes
can be evaluated at parse-time. This is particularly important when implement-
ing processors that produce code as the the input is being processed, i.e., for
implementing online algorithms.

2 We use HAPPY [Mar97] notation, an Yacc equivalent for Haskell.

www.manaraa.com




Suppose that we want to extend the BLOCK language with named blocks.
That is, the BLOOK AG is extended with the following production:

It — NAMEDBLK (’blk’ name ’:’ *(? Its ’)?)

In traditional AG implementations, the attribute evaluator would have to
be modified, since the type of the abstract syntax tree changes. Our implemen-
tation, however, is independent of the abstract tree data type. The attribute
evaluator of figure 3 can be reused, without any modification, to implement the
AG extension. The only part of the compiler that has to be modified is the parser:
the new production must be included, obviously. Furthermore the visit-functions
ANameaBiri Which implement the different visits to the production have to be
added to the compiler as a separate module. The new parser fragment looks as
follows:

It : blk name *:° >’ [ts *)’
{ ANamedBlk:1 $2 $5 }

The signature of the visit-functions An,meapip: must follow the partitions
of the non-terminal symbol It (i.e., the symbol on the left-hand side of the
production).

This property of our AG implementation is particularly important when de-
signing language processors, in a component based style: AG components and
the respective evaluators can be easily reused and updated, even when separate
analysis and compilation of such components is considered [Sar].

5 Applications

This section describes how our techniques are used in the context of Higher-
Order Attribute Grammars, Incremental Attribute Evaluation, Composition of
Attribute Grammars and Lazy Attribute Evaluation.

Higher-Order Attribute Grammars (HAG) [VSK89]: the techniques de-
scribed in this paper were developed in the context of the (incremental) evalua-
tion of HAGs. HAGs are an important extension to the classical AG formalism:
attribute grammars are augmented with higher-order attributes. Higher-order
attributes are attributes whose value is a tree with which we associate attributes
again. Attributes of these so-called higher-order trees, may be higher-order at-
tributes again. Higher-order attribute grammars have two main characteristics:
first, when a computation can not easily be expressed in terms of the inductive
structure of a tree, a better suited structure can be computed first, and secondly,
every computation (i.e., inductive semantic function) can be modeled through
attribute evaluation. Typical examples of the use of higher-order attributes are
mapping a concrete syntax tree into an abstract one and modelling symbol table
lookups.

A higher-order attribute grammar may have several higher-order attributes
(i.e., higher-order trees). Thus, an attribute evaluator for HAG may contain
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a possibly large number of higher-order trees. As a result the efficiency of the
attribute evaluator may be affected by the construction and destruction of those
trees. The technique described in this paper can be used to implement higher-
order attribute grammars [Sar]. The higher-order attributes are represented by
their initial visit-functions.

Incremental Attribute Evaluation: one of the key features of our AG imple-
mentation is that the attribute evaluators are constructed as a set of strict func-
tions. Consequently, an incremental attribute evaluator can be obtained through
standard function caching techniques [PSV92]. The incremental behaviour is
achieved by storing in a cache calls to the attribute evaluator functions and
by reusing their results when such functions are later applied to the same ar-
guments. This is the most efficient and elegant approach for the incremental
evaluation of HAGs [Pen94,CP96]. Previous techniques, however, rely on addi-
tional data structures, e.g., a binding tree, to handle attribute instances needed
in different traversals of the evaluator [Pen94]. A large number of calls to tree
constructor functions may have to be cached since the number of binding trees
is quadratic in the number of traversals. Such an approach, albeit optimal in the
number of reevaluations, can result in a substantial decrease of performance of
the incremental evaluator due to the fast growth, and consequent overhead, of
the cache [SKS96]. Using A-attribute evaluators no constructor functions exist
(i.e., abstract tree nor binding tree constructor functions) and thus no construc-
tor functions have to be cached! The calls to the visit-functions are the only calls
actually cached. The incremental evaluators have less cache overhead [Sar].

Composition of Attribute Grammars: consider a compiler organized as
follows: it has two AGs of the form ag; :: Ty — T5 and ags :: Ty — T3. That is,
it has two AGs which are glued by the intermediate tree Ty. Using traditional
AG techniques the tree 75 would have to be constructed. Using our techniques
the attribute evaluator of ag; directly calls the deforestated visit-functions of
the ago attribute evaluator, like in a normal multiple traversal AE. As result, no
intermediate tree is constructed. This strategy holds even when separate analysis
(compilation) of both AGs is considered. In [Sar] this composition of attribute
grammar components is presented.

Lazy Attribute Evaluation: attribute grammars can be easily and elegantly
implemented in a programming language with lazy semantics [KS87,Joh87,SA98].
The techniques described here are orthogonal to the lazy mapping of attribute
grammars. See [Sar] for the formal derivation of deforestated and lazily imple-
mentation of attribute grammars.

6 Implementation

The techniques described in this paper have been implemented in the LRC sys-
tem [KS98|, a purely functional attribute grammar system. The LRC processes
Higher-Order Attribute Grammars, written in a super-set of SSL, the synthesizer
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specification language [RT89], and produces purely functional attribute evalua-
tors.

We have developed a new back-end to the LRC in order to generate HASKELL
based attribute evaluators. A (coloured) WTEX version of such attribute evalua-
tors is also generated by the LRC system. Actually the HASKELL code presented
in this paper (including the AE of figure 3) was automatically produced by LrRC
from a SsL specification. The deforestation of HAGs and the lazy implementation
of attribute grammars, discussed in section 5, have also been implemented.

Several small and medium size A-attribute evaluators have been translated
into C in order to use the caching mechanism of the LRC system and to achieve
incremental evaluation. The automatic generation of A-attribute evaluators in
the C language is currently being incorporated to LRC.

7 Conclusions

This paper introduced a new technique for compiler construction. The compilers
are constructed as a set of strict and purely functional visit-functions. All explicit
data structure definition, construction and traversals have been removed. As a
result of our technique the A-attribute evaluators are totally generic and can
easily be reused and updated across different applications. Because constructor
funtions are never used, and all case statements have been “compiled way”, one
might in general expect better performance, since the flow of information is
now clearly represented in the structure of the paremeters and results of the
visit-functions. Thus, many compiler optimization techniques become enabled.
Furthermore parse-time attribute evaluation is achieved as a by-product: the
parser directly calls the visit-functions.

A simple language was analysed and the respective compiler was automati-
cally derived from an attribute grammar. A mapping from attribute grammars
into strict and purely functional attribute evaluator was defined. This mapping
has been implemented in the LRC system.

The technique described in this paper is not restricted to the context of
compiler construction only. It can be used to efficiently implement any algorithm
which performs multiple traversals over a recursive data structure. It was used,
for example, to implement a pretty printing combinator library [SAS98], which
is a four traversal algorithm and that would have been extremely complicated
to construct by hand.
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