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Data Structure Free CompilationJoão Saraiva1;2 and Doaitse Swierstra1{saraiva,swierstra}@cs.uu.nl1 Department of Computer Science, 2 Department of Computer Science,University of Utrecht, The Netherlands University of Minho, Braga, PortugalAbstract. This paper presents a technique to construct compilers ex-pressed in a strict, purely functional setting. The compilers do not relyon any explicit data structures, like trees, stacks or queues, to e�cientlyperform the compilation task. They are constructed as a set of func-tions which are directly called by the parser. An abstract syntax tree isneither constructed nor traversed. Such deforestated compilers are auto-matically derived from an attribute grammar speci�cation. Furthermorethis technique can be used to e�ciently implement any multiple traversalalgorithm.1 IntroductionTraditionally, compilers are organized in two main phases: the parsing phase andthe attribute evaluation phase, with an abstract syntax tree as the intermediatedata structure. The parser constructs the abstract syntax tree and the attributeevaluator decorates that tree, i.e., it computes attribute values associated to thenodes of the tree. In most implementations the attribute evaluator walks up anddown in the tree, while in the mean time decorating it with attribute values. Theabstract syntax tree guides the evaluator and stores attributes that are neededon di�erent traversals of the compiler.This paper presents a new technique for constructing compilers as a set ofstrict, side-e�ect free functions. Furthermore the compilers are completely defor-estated, i.e., no explicit intermediate data structure (e.g., abstract syntax tree)has to be de�ned, constructed, nor traversed. The parser directly calls attributeevaluation functions, the so-called visit-functions. Moreover all the attributesare handled in a canonical way: they just show up as arguments and results ofvisit-functions.Because our attribute evaluators are independent of any particular datastructure de�nition, they are more generic than classical attribute evaluators.They are highly reusable and new semantics can easily be added to the attributeevaluators, even when separate analysis of compiler components is considered.For example, new productions can be incorporated to an existent compiler with-out changing its attribute evaluator. The visit-functions which implement thenew productions are simply added to the compiler.Although it is possible to apply these techniques in hand-written compil-ers, it is much easier to generate them from an Attribute Grammar [Knu68].
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Our techniques were developed in the context of the incremental evaluation of(Higher-order) attribute grammars: e�cient incremental behaviour is achievedby memoization of visit-function calls [PSV92].In Section 2 we brie�y introduce attribute grammars, present a simple at-tribute grammar and describe attribute evaluators based on the visit-sequenceparadigm. In Section 3 �-attribute evaluators are introduced. Section 4 dealswith parse-time attribute evaluation. Section 5 discusses other applications ofour techniques and section 6 brie�y discusses the current implementation. Sec-tion 7 contains the conclusions.2 Attribute GrammarsThe compilers considered in this paper are speci�ed through an Attribute Gram-mar (AG) [Knu68] which belong to the class of Ordered Attribute Grammars[Kas80]. These AGs have proven to be a suitable formalism for describing pro-gramming languages and their associated tools, like compilers, language basededitors, etc. From an AG a parser and an Attribute Evaluator (AE) can auto-matically be derived.This section introduces an attribute grammar which acts as the running ex-ample throughout this paper. Using it, we present the concept of visit-sequences[Kas80] which are the basis of our techniques.2.1 The Block Language ExampleThis section presents a analyser for an extremely small language, called Block,which deals with the scope of variables in a block structured language. An exampleBlock program is:blk main : ( use y;blk (dcl w;use y;use w);dcl x;dcl x;dcl y;use w;);This language does not require that declarations of identi�ers occur beforetheir �rst use. Furthermore an identi�er from a global scope is visible in a localscope only if is not hidden by an a declarations with a same identi�er in a morelocal scope. In a block an identi�er may be declared at most once. The aboveprogram contains two errors: at the outer level the variable x has been declaredtwice and the use of the variable w has no binding occurrence at all.Because we allow a use-before-declare discipline, a conventional implementa-tion of the required analysis naturally leads to a program that traverses eachblock twice: once for processing the declarations of identi�ers and constructingan environment and once for processing the uses of identi�ers using the com-puted environment to check for the use of non-declared names. The uniquenessof names is checked in the �rst traversal: for each newly encountered declaration
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it is checked whether that identi�er has already been declared in this block. Inthat case an error message is computed. Since we need to distinguish betweenidenti�ers declared at di�erent levels, we introduce an inherited attribute levindicating the nesting level of a block. The environment is a list of bindings ofthe form (name; lev).In order to make the problem more interesting, and to demonstrate our tech-niques, we require that the error messages produced in both traversals are to bemerged in order to generate a list of errors which follows the sequential structureof the program.Figure 1 presents the attribute grammar de�ning the Block language. Weuse a standard AG notation: Productions are labelled with a name for futurereferences. Within the attribution rules of a production, di�erent occurrencesof the same symbol are denoted by distinct subscripts. Inherited (synthesized)attributes are denoted with the down (up) arrow # ("). As usual in AGs wedistinguish two classes of terminals: the literal symbols (e.g., ':', 'decl', etc)which do not play a role in the attribution rules and the pseudo terminal symbols(e.g., name), which are non-terminal symbols for which the productions are im-plicit (traditionally provided by an external lexical analyser). Pseudo terminalsymbols are syntactically referenced in the AG, i.e., they are used directly asvalues in the attribution rules. The attribution rules are written as Haskell-like expressions. The semantic functions mustbein and mustnotbein de�ne usualsymbol table lookup operations.root ProgProg <" errors >Prog ! RootP (Its)Its:lev = 0Its:dcli = []Its:env = Its:dcloProg:errors = Its:errorsIts <# lev; # dcli; # env; " dclo; " errors >Its ! NilIts ()Its:dclo = Its:dcliIts:errors = []j ConsIts (It ';' Its)It:lev = Its1:levIts2:lev = Its1:levIt:dcli = Its1:dcliIts2:dcli = It:dcloIt:env = Its1:envIts2:env = Its1:envIts1:errors = It:errors++Its2:errors

It <# lev; # dcli; # env; " dclo; " errors >It ! Use ('use' name)It:dclo = It:dcliIt:errors = name `mustbein` It:envj Decl ('dcl' name)It:dclo = (name; It:lev) : It:dcliIt:errors = (name; It:lev) `mustnotbein` It:dclij Block ('blk' '(' Its ')')Its:lev = It:lev + 1Its:dcli = It:envIts:env = Its:dcloIt:dclo = It:dcliIt:error = Its:errorsFig. 1. The Block Attribute Grammar.
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2.2 Structured Visit-SequencesThe attribute evaluators considered in this paper are based on the visit-sequenceparadigm [Kas80].A visit-sequence describes, for a node in the tree, the sequence of states thenode will go through when the abstract syntax tree is decorated. The essentialproperty is that this sequence depends solely on the production at the node,and not on the context in which it occurs, hence we denote vis(p) to denotethe visit-sequence associated to production p. In a visit-sequence evaluator, thenumber of visits to a non-terminal is �xed, and independent of the production.We denote the number of visits of non-terminal X by v(X). Each visit i to anode labelled with a production for a non-terminal X has a �xed interface. Thisinterface consists of a set of inherited attributes of X that are available to visiti and another set of synthesized attributes that are guaranteed to be computedby visit i. We denote these two sets by Ainh(X; i) and Asyn(X; i), respectively.Visit-sequences are the outcome of attribute evaluation scheduling algorithms.They can be directly used to guide the decoration of a classical attribute evalua-tor [Kas91]. Visit-sequences, however, are the input of our generating process. Itis then convenient to use a more structured representation of the visit-sequences.Thus, they are divided into visit-sub-sequences vss(p; i), containing the instruc-tions to be performed on visit i to the production p.In order to simplify the presentation of our algorithm, visit-sub-sequences areannotated with de�ne and usage attribute directives. Every visit-sub-sequencevss(p; i) is annotated with the interface of visit i to X: inh(�) and syn(�), where� (�) is the list of the elements of Ainh(X; i) (Asyn(X; i)). Every instructioneval(a) is annotated with the directive uses(bs) which speci�es the attributeoccurrences used to evaluate a, i.e., the occurrences that a depends on. Theinstruction visit(c; i) causes child c of production p to be visited for the ithtime. We denote child c of p by pc and the father (i.e. the left-hand side symbol ofp) by p0. The visit uses the attribute occurrences of Ainh(pc; i) as arguments andreturns the attribute occurrences of Asyn(pc; i). Thus visit(c; i) is annotatedwith inp(is) and out(os) where is (os) is the list of the elements of Ainh(pc; i)(Asyn(pc; i)).Figure 2 presents the structured and annotated visit-sub-sequences1 for theproductions RootP and Block.1 The visit-sequences were obtained using the Chained Scheduling Algorithm [Pen94].Chained scheduling is a variant of Kastens' Ordered Scheduling Algorithm [Kas80].It was designed with the aim at minimizing the number of attributes that must bepassed between traversals and, in this way, improving the behaviour of functionalattribute evaluators. Chained scheduling chooses the attribute evaluation order suchthat every attribute is computed as early as possible. The visit-sequences of �g-ure 2 are similar to the ones produced by Kastens' algorithm. The only exceptionis the schedule of the instructions eval(Its:lev). Kastens' algorithm schedules thisinstruction to the second visit-sub-sequence of production Block. In that case, theoccurrence It:lev must be retained for the second sub-sequence. A detailed analysisof both scheduling algorithms can be found in [Pen94] (chapter 5).
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plan RootPbegin 1 inh() ;eval (Its:lev)uses();eval (Its:dcli)uses();visit (Its; 1)inp(Its:lev; Its:dcli)out(Its:dclo);eval (Its:env)uses(Its:dclo);visit (Its; 2)inp(Its:env)out(Its:errors);eval (Prog:errors)uses(Its:errors)end 1 syn(Prog:errors)

plan Blockbegin 1 inh(It:lev; It:dcli)eval ( Its:lev )uses(It:lev);eval (It:dclo)uses(It:dcli)end 1 syn(It:dclo)begin 2 inh(It:env)eval (Its:dcli)uses(It:env);visit (Its; 1)inp(Its:dcli; Its:lev )out(Its:dclo);eval (Its:env)uses(Its:dclo);visit (Its; 2)inp(Its:env)out(Its:errors);eval (It:errors)uses(Its:errors)end 2 syn(It:errors)Fig. 2. Structured Visit-Sequences: the attribute occurrence Its:lev is de�ned in the�rst traversal of Block and is used in the next one.3 Deriving �-Attribute EvaluatorsThis section shows how to derive purely functional and strict attribute evaluators,starting from an available set of visit-sequences. The derived attribute evaluatorsare presented in Haskell. We use Haskell because it is a compact, well-de�ned and executable representation for our �-attribute evaluators. We startby describing our techniques informally and by analysing a simple example. Afterthat, we present the formal derivation of �-attribute evaluators and we derivethe evaluator for the Block language.The �-attribute evaluators consist of a set of partial parameterized visit-functions, each performing the computations of one traversal of the evaluator.Those functions return, as one of their results, the visit-functions for the nexttraversal. Performing the visit corresponds to totally parameterising the visit-functions and, once again returning the function for the next traversal. Themain idea is that for each visit-sub-sequence we construct a function that, be-sides mapping inherited to synthesized attributes, also returns the function thatrepresents the next visit. Any state information needed in future visits is passedon by partially parameterising a more general function. The only exception isthe �nal visit-function which returns synthesized attributes.
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Consider the following simpli�ed visit-sub-sequences for production X !Prod (Y Z) (the annotations inp and out of the visit instructions areomitted since they are not relevant for this example):plan Prodbegin 1 inh(X:inh1)visit (Y; 1)eval � � �uses(X:inh1 ; � � �);visit (Y; 2)eval (X:syn1)uses(� � �);end 1 syn(X:syn1)
begin 2 inh(X:inh2)visit (Z; 1)eval (X:syn2)uses(X:inh1 ; � � �)end 2 syn(X:syn2)Observe that, the inherited attribute X:inh1 must be explicitly passed from the�rst visit of X (where it is de�ned) to the second one (where it is used). The non-terminal Y is visited twice in the �rst visit to X. These two visit-sub-sequencesabove are implemented by the following two visit-functions:�Prod1 �Y 1 �Z1 inh1 = ((�Prod2 inh1 �Z1); syn1)where ( �Y 2 ; : : :) = �Y 1 : : :(: : :) = �Y 2 : : :syn1 = � � ��Prod2 inh1 �Z1 inh2 = (syn2)where (: : :) = �Z1 : : :syn2 = f( inh1 ; : : :)

inh1 de�ned in �Prod1used in �Prod2�Y 2 partial parameterized in the�rst traversal and totallyparameterized in the second one.The visit-functions �Y 1 and �Z1 de�ne the computations of the �rst traversalof non-terminal symbols Y and Z. The attribute occurrence X:x is passed fromthe �rst to the second traversal as a hidden result of �Prod1 in the form ofan extra argument to �Prod2 . Note that no reference to visits for non-terminalsymbol Y is included in �Prod2 since all the visits to Y occur in the �rst visit toP. Observe also that the function �Z1 is directly passed to the second visit toX, where the �rst visit to Z is performed.The �-attribute evaluators can be automatically derived from the visit-sub-sequences, by performing an attribute lifetime analysis: for each attribute occur-rence it is known in which visit it is de�ned and in which visit(s) it is used. Thus,let us introduce two predicates def and use. The predicate def(p; a; v) denoteswhether attribute a of production p is de�ned in visit v. Likewise, use(p; a; v)denotes whether attribute a of production p is used in visit v:def(p; a; v) = eval(a) 2 vss(p; v) _ inh(: : : ; a; : : :) 2 vss(p; v)_ out(: : : ; a; : : :) 2 vss(p; v)use(p; a; v) = uses(: : : ; a; : : :) 2 vss(p; v) _ syn(: : : ; a; : : :) 2 vss(p; v)_ inp(: : : ; a; : : :) 2 vss(p; v)
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Pseudo terminal symbols may also be used as normal attribute occurrenceswithin the attribute equations of the AG (like the symbol name of the BlockAG). Consequently, we need to perform a lifetime analysis of those symbols too.Thus, we extend the above predicates to work on terminal symbols too. Theterminal symbols, denoted by �, are not de�ned in the attribute equations, butat parse-time. So, we assign visit number 0 to the parser. The predicate def isextended as follows: def(p; a; 0) = a 2 �An attribute or pseudo terminal symbol of a production p is alive at visiti, if it is de�ned in a previous visit and it is used in visit i or later. For eachproduction p and for each of its visits i, with 1 � i � v(p0), we de�ne the setalive(p; i) which contains the live occurrences on visit i. It is de�ned as follows:alive(p; i) = f a j def(p; a; k) ^ use(p; a; j) ^ k < i � jgLet us concentrate now on the analysis of the visits to the non-terminalsymbols of the grammar. Let alive visits(p; c; v) denote the list of visits to childc of production p, which have to be performed in visit-sub-sequence v to p or inlater ones. This list is de�ned as follows:alive visits(p; c; v) = [ visit(c; i) j visit(c; i) 2 vss(p; j) ; v � j � v(p0)]Consider the visit-sub-sequences of productionProd. For the �rst sub-sequen-ce we have the following visits: alive visits(Prod; 1; 1) = [visit(p1; 1); visit(p1; 2)]and alive visits(Prod; 2; 1) = [visit(p2; 1)]. That is, in the �rst visit to Prodor later ones the non-terminal symbol Y is visited twice and the symbol Z isvisited once. Note that according to the visit-sub-sequences the single visit to Zis performed in the second visit of Prod. Consider now the visit-function �Prod1 .Observe that its arguments contain the reference to the �rst traversal of Y only(argument �Y 1). The function for the second traversal is obtained as a result of�Y 1 . Observe also that the reference to the visit to Z is passed on to the secondtraversal of Prod, where it is called. That is, the arguments of the visit-functioncontain a reference to the earliest visit (function) which has to be performed forall alive non-terminal symbols.In order to derive our visit-functions we need references (the visits-functions)to the earliest visit-function: all following references are returned by evaluatingthe previous ones. Thus, we de�ne the function inspect(p; v) which takes thehead of the list returned by nt vis (i.e., the following visit), for all non-terminalsymbols of production p. This is a partial function, since the list returned bynt vis may be empty. This occurs when no further visits to a non-terminalsymbol are performed. This function is de�ned as follows:inspect(p; v) = f hd alive visits(p; c; v) : alive visits(p; c; v) 6= [] ^ pc 2 N g, where hd is the usual operation that returns the head of a list and N denotesthe set of non-terminal symbols.
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We describe now the derivation of the �-attribute evaluator. For each pro-duction p and for each traversal i of non-terminal symbol p0 a visit-function �piis derived. The arguments of this visit-function are:1. The attribute occurrences which are alive at visit i, alive(p; i),2. The deforestated visit-functions derived for the right-hand side symbols of pwhich are inspected in traversal i or later, inspect(p; i), and3. The inherited attributes of traversal i, i.e., Ainh(p0; i).The result is a tuple of which the �rst element is the partial parameterizedfunction for the next traversal and the other elements are the synthesized at-tributes, i.e., Asyn(p0; i). Thus, the visit-functions have the following signature:�pi :: <type pp args(p; i)> T (inh 1) ! � � � ! T (inh k) !(T (�pi+1); T (syn 1); : : : ; T (syn l)), with finh 1; : : : ; inh kg = Ainh(p0; i), fsyn 1; : : : ; syn lg = Asyn(p0; i). T (a)should be interpreted as the derived type for element a. The fragment <type pp args(p; i)>denotes the type of the elements in alive(p; i) and in inspect(p; i). This fragmentis de�ned as follows:<type pp args(p; i)> = T (a1) ! � � � ! T (am) ! T (�vt1 ) ! T (�vtn) !, for all ai such that ai 2 alive(p; i) and for all vti such that vti 2 inspect(p; i).The visit-function which performs the last traversal of a non-terminal doesnot return any partial parameterized visit-function. Its signature is:�pn :: <type pp args(p; i)> T (inh 1) ! � � � ! T (inh k) !(T (syn 1); : : : ; T (syn l))Let us now derive the code of the visit-function �pi . It looks as follows:�pi <par par(p; i)> <inherited(i)> =((�pi+1 <par par(p; i+ 1)>);<synthesized(i)>)where <body(i)>and the visit-functions which performs the last traversal is:�pn <par par(p; n)> <inherited(i)> = (<synthesized(i)>)where <body(n)>where the code fragments de�ning the inherited and synthesized attributes lookas follows: <inherited(i)> = inh 1 inh 2 : : : inh k<synthesized(i)> = syn 1; syn 2; : : : ; inh lThe code fragment <par par(p; j)> denotes the partial parameterisation ofthe next visit-function.
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<par par(p; j)> = a1 : : : am �vt1 : : : �vtnThe body <body(i)> of each visit-function �pi is generated according to theinstructions of the visit-sub-sequence vss(p; i). Every attribute equation of theform eval (pq :a)uses(attroccs), de�ning an attribute occurrence pq :a = f (attroccs) of production p, generatesan equation (aq) = f (attroccs)Attribute pr:a occurring in attroccs is replaced by ar. Local attribute oc-currences of productions are copied literally to the body of the respective visit-functions.Every instruction visit(c; i) de�ning the visit i to non-terminal occurrencepc introduces a call. Two cases have to be distinguished:If i < v(pc) then the call returns the partial parameterized function for the nexttraversal. The following equation is generated:(�pi+1c ; syn 1c; : : : ; syn jc) = �pic inh 1c : : : inh lcIf i = v(pc) then only the synthesized attributes are computed by the functioncall. (syn 1c; : : : ; syn jc) = �pic inh 1c : : : inh lc, with finh 1; : : : ; inh jg = Ainh(pc; i) and fsyn 1; : : : ; syn lg = Asyn(pc; i).Let us return to the Block AG and derive the visit-function for the mostintricate production: the production Block. First we compute the set alive andthe visit-trees for each visit to that production.alive(Block; 1) = f galive(Block; 2) = f lev2 ginspect(Block; 1) = f Its1 ginspect(Block; 2) = f Its1 gAs expected, the attribute occurrence It:lev must be passed from the �rstto the second traversal. The two visit-functions derived for this production are:�Block1 <par par(Block; 1)> lev1 dcli1 = ((�Block2 <par par(Block; 2)>; dclo1)where <body(1)>
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�Block2 <par par(Block; 2)> env1 = (errors1)where <body(2)>, where the fragments <par par> are:<par par(Block; 1)> = �Its1<par par(Block; 2)> = lev2 �Its1The body of the visit-functions is trivially derived from the correspondingvisit-sub-sequences (see �gure 2): we present only the body of the visit-functionfor the second traversal to the production Block.<body(2)> = dcli2 = env1(�Its2 ; dclo2) = �Its1 dcli2 lev2errors2 = �Its2 dclo2errors1 = errors2The complete �-attribute evaluator derived from the Block attribute gram-mar is presented in �gure 3 (some copy rules were trivially removed from theAE code).�RootP1 �Its1 = errors2where lev2 = 1dcli2 = [](�Its2 ; dclo2) = �Its1 dcli2 lev2errors2 = �Its2 dclo2�ConsIts1 �It1 �Its12 dcli lev =((�ConsIts2 �It2 �Its22 ); dclo3)where (�It2 ; dclo2) = �It1 dcli lev(�Its22 ; dclo3) = �Its12 dclo2 lev�NilIts1 dcli lev = ((�NilIts2 ); dcli)�ConsIts2 �It2 �Its22 env = errorswhere errors2 = �It2 enverrors3 = �Its22 enverrors = errors2 ++ errors3�NilIts2 env = []

�Block1 �Its1 dcli lev =((�Block2 lev2 �Its1); dcli)where lev2 = lev + 1�Decl1 name dcli lev = ((�Decl2 errors); dclo)where dclo = (name; lev) : dclierrors = (name; lev) `mustnotbein` dcli�Use1 name dcli lev = ((�Use2 name); dcli)�Block2 lev2 �Its1 env = errors2where (�Its2 ; dclo2) = �Its1 env lev2errors2 = �Its2 dclo2�Decl2 errors env = errors�Use2 name env = errorswhere errors = name `mustbein` envFig. 3. The complete �-attribute evaluator for the Block Language.As a result of our techniques all visit-functions have become combinators,i.e., they do not refer to global variables. The type of the �-attribute evaluatoris the type of the visit-function of the root symbol:
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�RootP 1 :: ([a] ! Int ! ([a] ! b; [a])) ! bThis evaluator returns the attribute errors (type b) and it has one function asargument: the visit-function which performs the �rst visit to the non-terminalsymbol Its. This function has the initial environment (type [a]) and the level(type Int) as arguments and it returns a pair: the function for the second visitto Its (with type [a] ! b) and the total environment.As a result of generating Haskell code we inherit many useful properties ofthis language. The �-attribute evaluator of �gure 3, for example, is completelypolymorphic. In this evaluator nothing is de�ned about the type of the identi�ersof the language. The identi�ers are provided by an external lexical analyser. Theycan be a sequence of characters, a single character or even a numeral. The AEcan be reused in all those cases, provided that the semantic functions mustbeinand mustnotbein are de�ned on that type too.This approach has the following properties:� The �-attribute evaluators have the tendency to be more polymorphic.� The evaluators are data type independent and, thus, new semantics can beeasily added: for example, new productions can be incorporated to a compilerwithout having to change the evaluator. This property will be explained insection 4.� Attribute instances needed in di�erent traversals of the evaluator are passedbetween traversals as results/arguments of partial parameterized visit-functions. No additional data structure is required to handle them, like trees[Kas91,PSV92,SKS97] or stacks and queues [AS91].� The resulting evaluators are higher-order attribute evaluators. The argu-ments of the evaluators visit-functions are other AE visit-functions.� The visit-functions �nd all the values they need in their arguments.� No pattern matching is needed to detect the production applied at the nodethe evaluator is visiting.� The visit-functions are strict in all their arguments, as a result of the ordercomputed by the AG ordered scheduling algorithm.� E�cient memory usage: data not needed is no longer referenced. Referencesto grammar symbols and attribute instances can e�ciently be discarded assoon as they have played their semantic role.� The code of the attribute evaluator is shorter because no data structures arede�ned.4 Parse-Time Attribute EvaluationTraditional attribute grammar systems construct an abstract syntax tree duringthe parsing of the source text. This tree is used later to guide the attribute eval-uator. For some classes of attribute grammars the construction of the abstract
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syntax tree may be avoided and the attribute evaluation may be performed inconjunction with the parsing (L-attributed grammars). In this case, it is theparser which guides the attribute evaluation. Such a model has several advan-tages, namely speed and space requirements. Methods exist which make one-passattribute evaluation during parsing possible [ASU86].Parse-time attribute evaluation is achieved as a by-product of our AG imple-mentation: the parser directly calls the visit-functions which perform the �rsttraversal of the �-attribute evaluator.Consider again the production Block. The classic fragment of the parserderived from the AG which de�nes this production and constructs the corre-sponding tree node looks as follows2:It : blk '(' Its ')'f Block $3 gThe type of the parser derived from this speci�cation is a function from astring (i.e., the source text) to the type of the term de�ned by the production.parser It :: [Char] ! It, where It is a declared data type.Using our techniques the parser derived from the AG generates a call to theattribute evaluator visit-functions which perform its �rst traversal. Our parserlooks as follows: It : blk '(' Its ')'f �Block1 $3 gThe deforestated visit-functions are partially parameterized with the argu-ments available at parse-time. Those arguments are the other visit-functionswhich are partially parameterized when parsing the grammar symbols of right-hand side of the production. No explicit abstract syntax tree is constructed.Consider the visit-function �NilIts1 which returns the visit-function �NilIts2 .The function �NilIts2 is a constant function: it does not depends on its argu-ments. That is, it does not use the inherited attribute env and always returns anempty list (i.e., it evaluates the synthesized attribute errors). As result, �NilIts2can be computed at parse-time.Generally, every visit-function, derived from a visit-sub-sequence i which doesnot have inherited attributes (annotation inh) or which does not use its inher-ited attributes, can be evaluated in visit i� 1. It has all the arguments it needsavailable on the previous visit. Observe that the visit-functions derived for pro-ductions applied to non-terminal symbols which only have synthesized attributescan be evaluated at parse-time. This is particularly important when implement-ing processors that produce code as the the input is being processed, i.e., forimplementing online algorithms.2 We use Happy [Mar97] notation, an Yacc equivalent for Haskell.
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Suppose that we want to extend the Block language with named blocks.That is, the Block AG is extended with the following production:It ! NamedBlk ('blk' name ':' '(' Its ')')In traditional AG implementations, the attribute evaluator would have tobe modi�ed, since the type of the abstract syntax tree changes. Our implemen-tation, however, is independent of the abstract tree data type. The attributeevaluator of �gure 3 can be reused, without any modi�cation, to implement theAG extension. The only part of the compiler that has to be modi�ed is the parser:the new production must be included, obviously. Furthermore the visit-functions�NamedBlki which implement the di�erent visits to the production have to beadded to the compiler as a separate module. The new parser fragment looks asfollows: It : blk name ':' '(' Its ')'f �NamedBlk1 $2 $5 gThe signature of the visit-functions �NamedBlki must follow the partitionsof the non-terminal symbol It (i.e., the symbol on the left-hand side of theproduction).This property of our AG implementation is particularly important when de-signing language processors, in a component based style: AG components andthe respective evaluators can be easily reused and updated, even when separateanalysis and compilation of such components is considered [Sar].5 ApplicationsThis section describes how our techniques are used in the context of Higher-Order Attribute Grammars, Incremental Attribute Evaluation, Composition ofAttribute Grammars and Lazy Attribute Evaluation.Higher-Order Attribute Grammars (HAG) [VSK89]: the techniques de-scribed in this paper were developed in the context of the (incremental) evalua-tion of HAGs. HAGs are an important extension to the classical AG formalism:attribute grammars are augmented with higher-order attributes. Higher-orderattributes are attributes whose value is a tree with which we associate attributesagain. Attributes of these so-called higher-order trees, may be higher-order at-tributes again. Higher-order attribute grammars have two main characteristics:�rst, when a computation can not easily be expressed in terms of the inductivestructure of a tree, a better suited structure can be computed �rst, and secondly,every computation (i.e., inductive semantic function) can be modeled throughattribute evaluation. Typical examples of the use of higher-order attributes aremapping a concrete syntax tree into an abstract one and modelling symbol tablelookups.A higher-order attribute grammar may have several higher-order attributes(i.e., higher-order trees). Thus, an attribute evaluator for HAG may contain
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a possibly large number of higher-order trees. As a result the e�ciency of theattribute evaluator may be a�ected by the construction and destruction of thosetrees. The technique described in this paper can be used to implement higher-order attribute grammars [Sar]. The higher-order attributes are represented bytheir initial visit-functions.Incremental Attribute Evaluation: one of the key features of our AG imple-mentation is that the attribute evaluators are constructed as a set of strict func-tions. Consequently, an incremental attribute evaluator can be obtained throughstandard function caching techniques [PSV92]. The incremental behaviour isachieved by storing in a cache calls to the attribute evaluator functions andby reusing their results when such functions are later applied to the same ar-guments. This is the most e�cient and elegant approach for the incrementalevaluation of HAGs [Pen94,CP96]. Previous techniques, however, rely on addi-tional data structures, e.g., a binding tree, to handle attribute instances neededin di�erent traversals of the evaluator [Pen94]. A large number of calls to treeconstructor functions may have to be cached since the number of binding treesis quadratic in the number of traversals. Such an approach, albeit optimal in thenumber of reevaluations, can result in a substantial decrease of performance ofthe incremental evaluator due to the fast growth, and consequent overhead, ofthe cache [SKS96]. Using �-attribute evaluators no constructor functions exist(i.e., abstract tree nor binding tree constructor functions) and thus no construc-tor functions have to be cached! The calls to the visit-functions are the only callsactually cached. The incremental evaluators have less cache overhead [Sar].Composition of Attribute Grammars: consider a compiler organized asfollows: it has two AGs of the form ag1 :: T1 ! T2 and ag2 :: T2 ! T3. That is,it has two AGs which are glued by the intermediate tree T2. Using traditionalAG techniques the tree T2 would have to be constructed. Using our techniquesthe attribute evaluator of ag1 directly calls the deforestated visit-functions ofthe ag2 attribute evaluator, like in a normal multiple traversal AE. As result, nointermediate tree is constructed. This strategy holds even when separate analysis(compilation) of both AGs is considered. In [Sar] this composition of attributegrammar components is presented.Lazy Attribute Evaluation: attribute grammars can be easily and elegantlyimplemented in a programming language with lazy semantics [KS87,Joh87,SA98].The techniques described here are orthogonal to the lazy mapping of attributegrammars. See [Sar] for the formal derivation of deforestated and lazily imple-mentation of attribute grammars.6 ImplementationThe techniques described in this paper have been implemented in the Lrc sys-tem [KS98], a purely functional attribute grammar system. The Lrc processesHigher-Order Attribute Grammars, written in a super-set of Ssl, the synthesizer
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speci�cation language [RT89], and produces purely functional attribute evalua-tors.We have developed a new back-end to the Lrc in order to generate Haskellbased attribute evaluators. A (coloured) LATEX version of such attribute evalua-tors is also generated by the Lrc system. Actually the Haskell code presentedin this paper (including the AE of �gure 3) was automatically produced by Lrcfrom a Ssl speci�cation. The deforestation of HAGs and the lazy implementationof attribute grammars, discussed in section 5, have also been implemented.Several small and medium size �-attribute evaluators have been translatedinto C in order to use the caching mechanism of the Lrc system and to achieveincremental evaluation. The automatic generation of �-attribute evaluators inthe C language is currently being incorporated to Lrc.7 ConclusionsThis paper introduced a new technique for compiler construction. The compilersare constructed as a set of strict and purely functional visit-functions. All explicitdata structure de�nition, construction and traversals have been removed. As aresult of our technique the �-attribute evaluators are totally generic and caneasily be reused and updated across di�erent applications. Because constructorfuntions are never used, and all case statements have been �compiled way�, onemight in general expect better performance, since the �ow of information isnow clearly represented in the structure of the paremeters and results of thevisit-functions. Thus, many compiler optimization techniques become enabled.Furthermore parse-time attribute evaluation is achieved as a by-product: theparser directly calls the visit-functions.A simple language was analysed and the respective compiler was automati-cally derived from an attribute grammar. A mapping from attribute grammarsinto strict and purely functional attribute evaluator was de�ned. This mappinghas been implemented in the Lrc system.The technique described in this paper is not restricted to the context ofcompiler construction only. It can be used to e�ciently implement any algorithmwhich performs multiple traversals over a recursive data structure. It was used,for example, to implement a pretty printing combinator library [SAS98], whichis a four traversal algorithm and that would have been extremely complicatedto construct by hand.References[AS91] Rieks Akker and Erik Sluiman. Storage Allocation for Attribute Evaluatorsusing Stacks and Queues. In H. Alblas and B. Melichar, editors, InternationalSummer School on Attribute Grammars, Applications and Systems, volume545 of LNCS, pages 140�150. Springer-Verlag, 1991.[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,Techniques and Tools. Addison Wesley, 1986.
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